Evaluation of Pure Hydrocarbons as Jet Fuels

M. H. GOLLIS, L. I. BELENYESSY, B. J. GUDZINOWICZ, S. D. KOCH, J. O. SMITH, and R. J. WINEMAN Monsanto Research Corp., Boston Laboratories, Everett 49, Mass.

AIRCRAFT traveling at supersonic speeds require fuels with a greater heat sink capacity than that offered by petroleum fuels in current use because of the aerodynamic heating attendant with such speeds. The heat generated at subsonic flight speeds is readily dissipated by air cooling. At supersonic speeds, however, the rate of heat dissipation is inadequate. Fuels that can absorb this extra heat without undergoing adverse chemical change offer an answer to this cooling problem. The requirements for such fuels are thermal stability, good combustion characteristics, closely defined properties, and the best low temperature properties possible, commensurate with the first three requisites.

A thermally stable fuel would not decompose at the high temperatures caused by supersonic speed and thus would not form deposits that would hamper fuel pumping and vaporizing systems.

High heat of combustion means high energy release which increases flight range or payload.

Close definition of properties refers to the reproducibility of properties by whatever method the fuel is produced and to careful minimization of contaminants. Impurities such as nitrogen and sulfur compounds will adversely affect the thermal stability of the fuel by causing deposit formation.

Good low temperature properties, that is, low freezing point and low viscosity, are required for cold-climate, trouble-free performance in the fuel pumping system, effective atomization in fuel nozzles, and also for effective heat transfer in the cooling process.

This investigation has as its over-all objective, the synthesis and evaluation of various classes of saturated hydrocarbons for potential jet fuel use. The evaluation program is concerned with the determination of properties required for such fuels. The actual selection of fuels, however, is the responsibility of the U. S. Air Force. Also, the results of this study should be of value to the petroleum refiner in refining and blending operations toward the selection of the most promising hydrocarbon types for jet fuel application. Finally, an important adjunct of this program has been the determination of basic properties of saturated hydrocarbons.

The evaluation of 38 saturated hydrocarbons is presented as part of a continuing study.

RESULTS AND DISCUSSION

Synthesis Program. The saturated hydrocarbons involved in this program were selected as representative of the following classes: acyclics, monocyclics, bicyclics—both condensed and isolated ring systems, and polycyclics—both condensed and isolated ring systems.

Of the 38 compounds studied, 24 were synthesized in this laboratory. In general, commercial feasibility from the standpoint of availability of raw materials and synthetic methods has governed the synthesis program. Reactions used to prepare the aromatic or unsaturated precursors included Friedel-Crafts alkylations and acylations, acidcatalyzed condensations, Diels-Alder additions, Grignard additions, and bimolecular reductions. The aromatic and unsaturated precursors were reduced over a nickel catalyst at high pressure and carefully fractionated before evaluation.

In most cases stereomeric mixtures were not separated because of the inherent difficulties involved. In some cases position isomers were not separated since such mixtures would result from commercial processes and remain liquids at lower temperatures than the pure isomers. Purity estimation of the compounds studied was effected by vapor phase chromatography and infrared and ultraviolet spectrophotometry. The estimated purities, reported in vapor phase chromatography as area per cent, are given in Table I. Over 80% of the compounds studied possessed purities greater than 98 area % with a minimum of 93.5 area % observed.

For the 24 compounds synthesized in this laboratory, knowledge of the synthetic routes was an important purity criterion. Because of the nature of their preparation, these compounds were virtually free of sulfur, nitrogen, and halides. High pressure reduction over a nickel catalyst removed traces of sulfur compounds; the synthetic methods did not employ nitrogen-containing compounds; and negative Beilstein tests indicated halogen content of less than 5 p.p.m. (3).

The synthesis program included some compounds of unusual structure, the preparation of which until recently would have prohibited their consideration as potential fuels. Cyclododecane (I) is conveniently prepared in two steps; butadiene is trimerized with a Ziegler catalyst, and the resulting cyclododecatriene is catalytically reduced (8).

Evaluation Program. The evaluation program has been concerned with the determination of properties defining the following performance characteristics of jet fuels:

Cooling capacity	Combustion characteristics
Heat sink capacity	Heat of combustion
Thermal stability	Weight basis, B.t.u. per pound
Heat capacity	Volume basis, B.t.u. per gallon
Heat transfer properties	Burning characteristics
Viscosity	Luminosity (Luminometer)
Thermal conductivity	Deposit formation
Heat capacity	(Phillips microburner)
	Low temperature properties
	Viscosity
	Freezing point

The results of this program are summarized in Table I which lists the properties of some of the hydrocarbons examined to date. This investigation is currently in progress, and at its completion a rather full study of most saturated hydrocarbon types will have been made.

Thermal Stability. The most important property to be evaluated is thermal stability. Unfortunately, it is also the property which is most difficult to define and measure. Basically, the thermal stability of interest is related to the amount of deposit which, because of heating, forms in the fuel handling system of the aircraft before the fuel is burned. The thermal stability, as defined above, is influenced by the chemical structure of the fuel, the presence of contaminants, and the fuel system design. By using pure materials of known structure an attempt has been made to limit this investigation to thermal stability as influenced by the chemical structure of the fuel.

At present there is no accepted laboratory test using a pint of fuel or less that will reliably determine the thermal stability of fuels. The development of such a suitable thermal stability test is currently in progress under U. S. Air Force sponsorship.

Until a suitable test has been developed, a very simple determination of the thermal decomposition temperature Table I. Physical Constants of Hydrocarbons

Purity VPC	•	96.9	:	99.5	96.8	100.0	06	94.9	99.5	98.5	9.66	99.2	98.9	98.2	99.5	98.3	9 .66	95.9	99.4	93.5	98.0	6.66	99.66	98.9	99.2	99.8 0	95.7 100.0	0.001	0.001	95.1	60.3	6.66	98.5	6.66	0.66	99.7	97.8 090 0	>>>>
Net Heat of Combustion, $-\Delta H$	B.t.u./Gal	122,300		120,000	124,670	136,632	124,212	137,798	132,574	135,470	135,108	135,998	137,400	135,800	136,000	137,700	135,400	132,600	135,000	133,150	134,272	134,800	136,442	132,864	137,580	138,457	138,000	101,200	135 388	149.697	145.200	142,600	152.132	148,490	140,683	142,729	142,000	:
Net Combu	B.t.u./Lb.	18,940		18,944	18,590	18,667	18,735	18.361	18,278	18,340	18,374	18,370	18,420	18,379	18,317	18,442	18,341	18,145	18,437	18,123	18,695	18,423	18,430	18,297	18,403	18,682	18,556 19 496	10,400	10,400	18 474	18.368	18,265	18.121	18,064	18,414	18,369	18,287 18,241	
vity, <u>.</u> F./Ft.)	316° F.	:	:	:	:	:				:	:	÷	:	:	:	:	:	0.0588	0.0598	0.0584	:	:	0.0604	:	÷		0.0628	0.00020	0.0309	0100.0	0.0571	0.0584			:	:	:	••••
Thermal Conductivity, k, $\left[\frac{B.t.u.}{Hr.Ft.^{2(e}F./Ft.)}\right]$	219° F.	0.0748	:	0.0668	0.0594	:	:	0.0630	0.0583	0.0614	0.0588	0.0625	0.0591	0.0617	:	0.0586	0.0637	0.0589	0.0598	0.0589	0.0569	:	0.0618	0.0623	0.0612		0.0657	0700.0	0.0699	0.0640	0.0581	0.0583		0.0569	0.0682	:	0.0615	•
Then k,	145° F.	0.0760	:	0.0738	0.0606	:	:	0.0614	0.0559	0.0564	0.0571	0.0583	0.0593	0.0571	:	0.0571	0.0668	0.0608	0.0611	0.0612	0.0588	÷	0.0617	0.0653	0.0615		0.0691	0630 0	0.0040	0.0666	0.0567	0.0614		0.0574	0.0647		0.0627	•
lcity, b. ° F.]	. 300° F.	0.608	:	:	0.579	:	:	0.495	0.529	0.542	0.532	0.543	0.543	0.554	0.525	0.552	0.569	:	0.553	0.542	0.527	:	0.569	0.497	0.536	0.000	0.577	0 564	0.571		0.569	:	0.509	0.518	0.563	0.536	0.537 0.524	
Heat Capacity, Cp.[B.t.u./Lb. ° F.]	F. 200° F.	0.560	:	:	0.495	:	•	0.437	-							-	0.472				0.449						0.536	:	0.517		0.508		0	-			0.479	
mal mp. D.	100° F	5 0.512	:		3 0.447	::		0.379		0.422						-	0.423				0.400			0.397			•		0.471		0		0	-		0.439	_	
Thermal Decomp. Temp.	F.	705	200	200	ه 716	740	650	780	770	750	75	740	730	72	710	700	770	74	730	069	200	760	715	75	-		6/0 980				U		740	:	;;	675	730	
	Compound	Cetane	n-Undecane	$n ext{-}\mathrm{Dodecane}^{a}$	Diethylcyclohexane (mixed isomers) ^b	Cyclododecane	1,2,3,4,5,6-Hexaethylcyclohexane ^b	Decalin (mixed isomers) ^c	β -Methyldecalin ^{b}	α -Methyldecalin ⁶	β -Ethyldecalin ^b	α -Ethyldecalin [°]	α -Isopropyldecalin ⁶	α - <i>n</i> -Propyldecalin ⁶	α - <i>n</i> -Butyldecalin ^{<i>p</i>}	a-sec-Butyldecalin [®]	Hydrindan ^e	Methylhydrindan ^a	$Ethylhydrindan^{4}$	Isopropylhydrindan	Pinane	Dimethyldecalin (mixed isomers)*	Isopropylbicyclohexyl"	Bicyclopentyl	Bicyclohexyl	Upper Store State	1,1-DicyclonexyIneptane ⁻ 1 2. Dicycloheyylmronane ^b	Curlohevul(ethulouclohevul)mathana ^b	Dicyclohexylmethane ^b	Tricvclo[7.1.1.0.0 ^{4,6}]decane ⁶	1-Cyclohexyl-1,3,3-trimethylhydrindan ^b	9-Methylperhydrofluorene	Tetracyclo[6.2.1.1 ^{a,6} dodecane ^{&}	3-Ethylperhydropyrene ⁴	4'-n-Heptyl-m-tercyclohexyl	Cyclopentylbicyclohexyl	o- I ercyclonexyl [*] <i>m</i> -Tercyclohexyl [*]	6
		П	5	e	4	5	9	7	80	6	10	Ξ	12	13	14	12	16	17	18	19	83	21	22	33	57 K	3 6	97 E2	96	38	30	31	32	33	34	83	£ 5	7 88 7	

- < < < < < < < < < < < < < < < < < < <		N		no (famoar)				Molecular	ט/ח
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Compound	No.	–30° F.	100° F.	210° F.	300° F.	Pt., °F.	Weight	Wt. Ratio
	Cetane	140.1	Solid	3.05	1.31	0.845	+65	226.4	0.178
	n-Undecane	157.9		:	:	:	+14	156.3	0.183
	n-Dodecane ^e	157.8	:	:	:		+16.8	170.3	0.182
• • •	Diethylcyclohexane (mixed isomers) ^b	80.7	4.41	1.07	0.57	:	<-70	140.2	0.168
	Cyclododecane	106.1	Solid	Solid	2.28	1.18	~ 110	168.3	0.168
	1,2,3,4,5,6-Hexaethylcyclohexane [*]	69.69	Solid	11.2	2.01	1.07	-16	252.5	0.168
	Decalin (mixed isomers) ^c	46.5	16.5	2.35	1.04	0.655	-92	138.2	0.151
-	ß-Methyldecalin ^b	:	11.1	1.82	0.86	0.558	:	152.3	0.153
0 UL	α -Methyldecalin ^{b}	:	15.0	2.20	0.98	0.623	:	152.3	0.153
۲u N	β -Ethyldecalin ⁶	:	22.0	2.38	1.04	0.655	:	166.3	0.154
11α	lpha-Ethyldecalin ^{b}	:	22.0	2.38	1.04	0.655	:		0.154
12α	$lpha$ -Isopropyldecalin $^{\circ}$:	:	3.22	1.25	0.780	< -75		0.155
13 α -	α - <i>n</i> -Propyldecalin ⁶	:	:	2.90	1.13	0.710	:		0.155
14α	α-n-Butyldecalin ^b	:	103.1	3.80	1.32	0.850	<-70		0.156
15α	α-sec-Butyldecalin ⁶	:	126.0	3.90	1.32	0.820	<-70		0.156
16 H	Hydrindan ⁴	49.5	7.74	1.95	0.86	0.550	-48		0.149
17 N	Methylhydrindan ⁴	45.9	9.47	1.67	0.81	0.542	<-75		0.151
18 E	${ m Ethylhydrindan}^d$	51.3	11.2	1.76	0.85	0.570	<-75		0.153
	(sopropylhydrindan [°]	50.9	12.7	2.10	0.97	0.630	<-75		0.154
20 P	Pinane	50.8	11.5	1.85	0.85	0.535	<-75		0.151
21 D	Dimethyldecalin (mixed isomers) ⁶	47.5	22.6	2.35	1.04	0.600	<-75		0.154
22 Is	[sopropylbicyclohexy] ⁶	58.2	Solid	6.2	1.82	1.03	-29		0.157
23 B	Bicyclopentyl	52.2	4.22	1.35	0.72	0.502	-35		0.151
	Bicyclohexyl [¢]	:	Solid	3.15	1.18	0.737	:		0.154
•	Cyclohexyl(2-ethylcyclohexyl)methane [*]	:	:	5.2	1.62	0.95	-20 to -2		0.157
26 1,	,1-Dicyclohexylheptane ^d	81.8	16,700	19.0	3.1	1.46	-42		0.159
27 1,	,2-Dicyclohexylpropane ^{b}	69.69	827.3	6.5	1.87	1.22	<-75		0.157
28 C	Cyclohexyl(ethylcyclohexyl)methane"	72.3	416.6	7.0	1.75	1.0	<75		0.157
	Dicyclohexylmethane	74.8	Solid	4.1	1.44	0.86	+2		0.155
30 T	$Tricyclo[7.1.1.0.0^{46}]$ decane [°]	23.1	Solid	2.75	1.09	0.69	+50		0.134
31 1.	-Cyclohexyl-1,3,3-trimethylhydrindan [°]	46.4	Solid	31.0	4.10	1.84	-10		0.149
32 9	9-Methylperhydrofluorene [/]	33.2	86.9	4.3	1.52	0.92	<-75		0.144
33 T	Petracyclo[6.2.1.1 ^{3.6}]dodecane [«]	17.7	:	:	:	:	+62		0.126
34 3	3-Ethylperhydropyrene [*]	35.1	Solid	17.5	3.3	1.61	+25		0.140
35 4	4'-n-Heptyl-m-tercyclohexyl'	72.7	Solid	240	12.0	3.79	+68		0.155
_	Cyclopentylbicyclohexyl*	57.2	Solid	14.5	3.2	1.52	+38 to 42		0.148
37 0-	o-Tercyclohexyl	:	Solid	:	:	:	+20 to 2		0.149
38 1	m-Tercyclohexyl	70.3	:	:	:	:	:		0.149

of fuels is being made in a high pressure, high temperature isoteniscope (Figure 1). This instrument measures the temperature at which the fuel begins to decompose and evolve gas, but does not measure deposit formation.

Thermal decomposition temperature for a compound is defined as that temperature at which the fuel decomposes at the rate of 1 mole % per hour. Two assumptions are made in calculating this quantity: the decomposition is unimolecular, and 1 mole of gas is formed by the decomposition of 1 mole of pure compound.

Thus, for pure saturated hydrocarbons, the thermal stability given by this method would probably be the minimum temperature at which the fuel becomes unsuitable for use, since it is unlikely that deposit formation would occur before decomposition to gaseous products. The fuel may decompose to gas without forming deposits; if this is the case, the fuel could be used at temperatures higher than those indicated by the isoteniscope.

This method is not applicable to ordinary jet fuels which may contain unsaturates or trace impurities such as nitrogen and sulfur. Unsaturates can polymerize to give deposits with a decrease in vapor pressure.

The following tabulation summarizes, in general, the high pressure, high temperature isoteniscope decomposition temperatures for a number of representative hydrocarbon classes examined so far. The three most thermally stable groups were the unsubstituted condensed bicyclics, the lower monoalkylated condensed bicyclics, and the monocyclics. The condensed polycyclics examined, dimethanodecalin and 9-methylperhydrofluorene, exhibited thermal stabilities approximately equivalent to the lower monoalkylated condensed bicyclics.

Thermal Decomposition Temperatures

Biovalias condensed	T_d , ° F.
Bicyclics, condensed Decalin Hydrindan α- or β-Methyldecalin α- or β-Ethyldecalin Methylhydrindan	780 770 750–770 740–750 740
Monocyclics Diethylcyclohexane Cyclododecane 1,2,3,4,5,6-Hexaethylcyclohexane	716 740 650
Polycyclics Tetracyclo[6.2.1.1 ^{3,6}]dodecane ^a 9-Methylperhydrofluorene <i>m</i> -Tercyclohexyl Cyclopentylbicyclohexyl 1-Cyclohexyl-1,3,3-trimethylhydrindan Acyclics and dicyclic alkanes Cetane <i>n</i> -Dodecane Cyclohexyl(ethylcyclohexyl)methane 1,1-Dicyclohexylheptane	740 730 730 675 665 705 700 705 670

[°] Dimethanodecalin.

Of particular interest is the decrease in thermal decomposition temperature of the decalins with increasing chain length of substituted alkyl groups: decalin (780° F.), α -methyldecalin (750° F.), α -ethyldecalin (740° F.), α -npropyldecalin (720° F.), α -n-butyldecalin (710° F.), and α -sec-butyldecalin (695° F.).

The thermal decomposition temperature range of the butyldecalins is approximately that observed for the *n*-alkanes such as cetane (705° F.) and *n*-dodecane (700° F.). The same trend is noted in alkylated hydrindans: hydrindan (770° F.), methylhydrindan (740° F.), ethylhydrindan (730° F.), and isopropylhydrindan (690° F.).

Thus, as the chain length of alkyl substituents of such condensed bicyclics increases, the thermal decomposition temperatures approach those for the n-alkanes.

This same general trend is observed for other saturated hydrocarbons with a high degree of nuclear alkylation. The net effect is a relatively low thermal stability as measured by this method. 1-Cyclohexyl-1,3,3-trimethyl-hydrindan has a thermal decomposition temperature of 665° F. and 1,2,3,4,5,6-hexaethylcyclohexane a value of 650° F.

Heat Capacity. Heat capacities have been determined over the temperature range 100° to 300° F. using a differential heating method and apparatus previously described in the literature (5-7).

Of the compounds studied so far, the normal alkanes were observed to have the highest heat capacities.

Heat	Сар	acity
------	-----	-------

	Cp. (B.t.u./Lb. ° F.)							
Compound	100° F.	200° F.	300° F.					
Cetane	0.512	0.560	0.608					
1,1-Dicyclohexylheptane	0.480	0.536	0.577					
Isopropylbicyclohexyl	0.479	0.524	0.569					
Dicyclohexylmethane	0.471	0.517	0.571					
α - <i>n</i> -Propyldecalin	0.445	0.499	0.554					
Diethylcyclohexane	0.447	0.495	0.579					
Bicyclohexyl	0.432	0.465	0.536					
α -Methyldecalin	0.422	0.482	0.542					
Decalin	0.379	0.437	0.495					

Next in order are the alkylated noncondensed bicyclics, followed in turn by the alkylated condensed bicyclics, alkylated monocyclics, and unsubstituted bicyclics. Alkylation of the nucleus increases heat capacity, and the heat capacity increases linearly with increasing temperature over the range studied.

Thermal Conductivity. A highly refined modification of the hot wire method has been adopted to measure the thermal conductivity of organic liquids. The cell developed by Cecil and Munch (1) is designed to place the results on an absolute basis and to enable accurate thermal conductivity measurements to be made on small samples of liquid (~ 20 ml.). For measurements at elevated temperatures, the thermal conductivity cell is immersed in an insulated silicone fluid bath, the temperature of which is maintained by a condensing vapor bath (2).

The following tabulation extracted from Table I shows that the normal paraffins have the highest thermal conductivity of the compounds tested. Next in order were longchain, alkyl-substituted di- and tricyclics, followed by a number of compounds containing the 5-membered ring system.

Of lower conductivity than this latter category is a large group of compounds of varied structure for which no obvious correlation is apparent. The poorest group of compounds with respect to this property contained many of the alkylated decalins. There is no apparent uniform change in thermal conductivity with temperature in the ranges studied.

Thermal Conductivity

	K[B.t.u./H	Hr. Sq. Ft. (°	F./Ft.)]
Compound	145° F.	219° F.	316° F .
Cetane	0.0760	0.0748	
4-n-Heptylbicyclohexyl	0.0708	0.0711	0.0609
Bicyclopentyl	0.0664	0.0642	
Dicyclohexylmethane	0.0649	0.0622	0.0616
o-Tercyclohexyl	0.0627	0.0615	
Decalin	0.0614	0.0630	
9-Methylperhydrofluorene	0.0614	0.0583	0.0584
Pinane	0.0588	0.0569	
α -Methyldecalin	0.0564	0.0615	

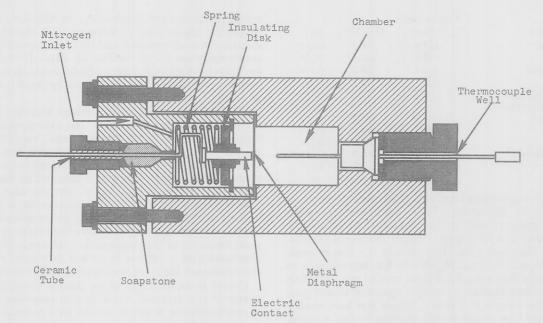


Figure 1. High temperature, high pressure isoteniscope

Lb.

B.T.U.

COMBUSTION.

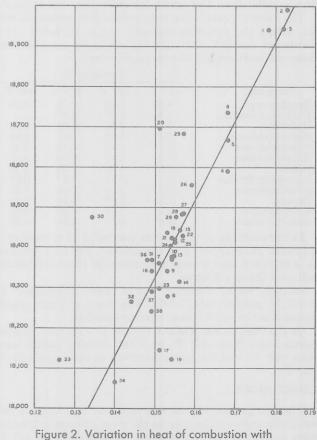
40

IEAT

Heat of Combustion. Net heats of combustion were obtained with a Parr Oxygen Bomb Calorimeter according to A.S.T.M. D240-57T and are listed in Table I.

It is desirable to have as high a heat of combustion as possible on a weight and a volume basis. In unstrained compounds, a compromise must be made because as the former decreases the latter increases. In short range, high load missions, a high heat of combustion per unit weight is more important than a high volume-based heat of combustion. In long range, low load missions, a high heat of combustion per unit volume becomes important. Thus, it is impossible to define the best fuel without specifying its end use. In fuels such as cyclohexyl(2-ethylcyclohexyl)methane and pinane, both high weight- and volume-based heats of combustion are obtained. These would be good compromise fuels. Normal paraffins such as cetane are outstanding on a weight basis and dimethanodecalin has the highest volume-based heat of combustion of the compounds evaluated so far.

Data in Table I clearly show that as the hydrogen-tocarbon (H/C) ratio increases, the heat of combustion (British thermal unit per pound) increases. This correlation is more clearly seen in Figure 2. Exceptions to this generalization exist for those cases where strain occurs in the molecule; examples of such compounds are pinane and tricyclo[7.1.0.0^{4,6}]decane.


The heat of combustion on a volume basis, in general, increases as the H/C ratio decreases because of the overriding effect on heat of combustion of the density increase as compared to the H/C ratio decrease. *n*-Dodecane, with and H/C ratio 0.182, has a value of 120,000 B.t.u. per gallon, whereas dimethanodecalin, with an H/C of 0.126, has a value of 152,100 B.t.u. per gallon.

Burning Characteristics. It is important that fuels burn cleanly in a jet engine. Deposits caused by poorly burning fuels decrease the efficiency of the power plant. Another problem is that of increased engine temperatures caused by radiant heating as described by Droegemueller (4). Fuels burning with a luminous flame should be avoided, since the additional heat produced by the emitted radiation may seriously damage the engine burner walls and other engine parts, making frequent overhaul necessary.

Evaluation of the radiation emitted during burning was carried out with the Luminometer (4). The method is described in (9).

As outlined in the following tabulation extracted from

Table I, normal alkanes have the highest Luminometer numbers (that is, are the least luminous) of the compounds tested. Next in order are monocyclics and isolated ring bicyclics, followed by condensed ring compounds. In general, the lower the molecular weight, the higher the H/C ratio, and the less the branching, the higher the Luminometer number (the lower the luminosity). Also, 6-membered ring compounds appear to burn less luminously than their 5-membered counterparts.

hydrogen-to-carbon ratio Compounds referred to by number are listed in the table

Compound	Luminometer No.	Mol. Wt.	H/C
<i>n</i> -Undecane	157.9	156.3	0.183
Cetane	140.1	226.4	0.178
Cyclododecane	106.1	168.3	0.168
Iso-octane	100ª	114.2	0.188
Diethylcyclohexane	80.7	140.3	0.168
Dicyclohexylmethane	74.8	180.3	0.155
Bicyclopentyl	52.2	138.2	0.151
Hydrindan	49.4	124.2	0.149
Decalin	46.5	138.2	0.151
$\operatorname{Dimethanodecalin}^b$	17.7	162.3	0.126
Tetralin	0ª	132.2	0.150
^e By definition.	^b Tetracy	$clo[6.2.1.1^{3.6}]$]dodecane.

The Phillips microburner has also been used to evaluate fuels for deposit formation. This instrument measures deposits and gums formed in burning and is designed to simulate burning in a jet engine. Present results, in general, indicate that the greater the H/C ratio in the fuel burned, the less the deposit formed. Relatively few experiments to evaluate deposit formation have been carried out with this instrument to date because of sample quantity limitations.

Viscosity. The viscosity of a fuel determines how readily it will flow and how easily it will atomize in fuel nozzels. Low viscosity makes for efficient fuel pumping and atomization. In addition, low viscosity is a desirable characteristic for good heat transfer properties.

The specification for this property is a maximum of 15 cs. at -30° F. For the pure compounds evaluated to date this viscosity limit would appear to be the most restrictive requirement. It is possible that this requirement can be met by mixtures of pure compounds. Also, given a fuel outstanding in all properties, except for its low temperature viscosity, it may be possible to design around this deficiency. Some of the pure compounds studied in this program have been found to be solids or highly viscous liquids at -30° F.; petroleum fractions, on the other hand, do not suffer from this limitation since they are mixtures.

The following tabulation summarizes the compounds that fall within the desirable viscosity range. Included are a number of decalins, although the values for some of these compounds are slightly above specification.

		Viscosity, Cs.							
Compound	-30° F.	100° F.	210° F.	300° F.					
Bicyclopentyl	4.22	1.35	0.72	0.50					
Diethylcyclohexane	4.41	1.07	0.57						
Hydrindan	7.74	1.95	0.86	0.55					
Methylhydrindan	9.47	1.67	0.81	0.54					
β-Meťhyľdecalin	11.1	1.82	0.86	0.56					
Éthylhydrindan	11.2	1.76	0.85	0.57					
Pinane	11.5	1.85	0.85	0.54					
Isopropylhydrindan	12.7	2.10	0.97	0.63					
α -Methyldecalin	15.0	2.20	0.98	0.62					
Decalin	16.5	2.35	1.04	0.66					
α -Ethyldecalin	22.0	2.38	1.04	0.66					
Dimethyldecalin	22.6	2.35	1.04	0.60					

In the counting program, the viscosities of a number of alkylated monocyclics and isoparaffins will be evaluated. It is expected that a large proportion of these compounds will meet the specification.

Freezing Point. Freezing points were determined by A.S.T.M. method D1477-57T. The freezing point specification is not as restrictive as that for viscosity.

Of the compounds studied (Table I) 43% had freezing points lower than -60° F., 55% had freezing points lower than -40° F., and the remainder froze in the range -40° to 110° F.

CONCLUSIONS

The data gathered in this evaluation to date indicate that saturated monocyclics may be the most promising compromise fuel based on an over-all consideration of all the properties determined. This class, as typified by diethylcyclohexane, has high thermal stability, high heat of combustion, and low luminosity. In addition, its viscosity properties are excellent. However, this class is somewhat deficient in heat capacity and thermal conductivity. These conclusions are based on limited data. Remaining to be evaluated are a wide variety of additional monocyclics, the preparations of which are commercially feasible from readily available raw materials.

The normal alkanes and condensed bicyclics each possess certain outstanding properties, but also possess important limitations. For example, the heat sink capacity is related to the thermal decomposition temperature and heat capacity. The condensed bicyclics, though outstanding with respect to the former, are quite deficient in heat capacity; the reverse is true for the normal alkanes. Also, the normal alkanes possess high heats of combustion on a weight basis and are least luminous in burning; the condensed bicyclics, however, possess the lowest heats of combustion and are the most luminous of the compounds evaluated. If the heat of combustion on a volume basis is a dominant requirement, the condensed bicyclics are superior to the normal alkanes.

Pinane is an example of an unique condensed bicyclic in that it is a strained molecule and possesses a high heat of combustion on a weight as well as a volume basis. This compound also has good low temperature properties and is commercialy available.

Within comparable molecular weight ranges, the condensed bicyclics possess better low temperature properties. Although the evaluation of the condensed bicyclics is essentially complete, examination of the alkanes (normal and isoalkanes) is as yet incomplete.

The noncondensed bicyclics—e.g., isopropylbicyclohexyl, are not outstanding in any one property. The most serious deficiency of this class is the low temperature viscosity; in any fuel application where a high viscosity is not limiting, the noncondensed bicyclics would be good compromise fuels.

From over-all considerations the condensed polycyclics examined to date appeared to be the least promising of the classes considered. Although they possess good thermal stability, they are deficient in heat of combustion on a weight basis. They do, however, possess good heats of combustion on a volume basis. Their burning characteristics and low temperature properties also are poor.

LITERATURE CITED

- Cecil, O.B., Koerner, W.E., Munch, R.H., Ind. Eng. Chem. (1)Data Series 2, 54 (1957).
- (2)
- Cecil, O.B., Munch, R.H., Ind. Eng. Chem. 48, 437 (1956). Cheronis, N.D., Entrikin, J.B., "Semimicro Qualitative Organic Analysis," 2nd ed., p. 178, Interscience, New York, (3)1957.
- Droegemueller, E.A., "Optimizing Fuels of Jet Aircraft," (4)Western Petrol. Refiners Assoc. Tech. 60-15, Presented at the 48th annual meeting of the WPRA, San Antonio, Tex., March 1960.
- Porter, R.S., Johnson, J.F., Preprints of General Papers, (5)Division of Petroleum Chemistry, ACS, Vol. 3, No. 1, 15 (1958)
- Spear, N.H., Anal. Chem. 24, 938 (1952).
- Thompson Products, Inc., Cleveland, Ohio, Project 817, Rep. No. Ing. Er. 206, "Study of the Vaporization Cycle and (7)Thermodynamic Properties of Petroleum Type Fuels," Jan. 1958.
- Wilke, G., Angew. Chem. 69, 397 (1957). (8)
- (9)Wurster, C.F., Jr., Smith, J.O., Satterfield, C.N., J. CHEM. Eng. Data 6, 626 (1961).

RECEIVED for review March 22, 1961. Accepted December 28, 1961. Division of Petroleum Chemistry, Symposium on Jet Fuels, 138th Meeting, ACS, New York, N. Y., September 1960. Work done under Air Force Contracts AF 33(600) 3848, AF 33(600) 39634, AF 33(616) 5799, and AF 33(616) 7190. Contracts administered by Propulsion Laboratory, Wright Air Development Division, Wright Field, Ohio, with T.L. Gossage and J. Fultz as project engineers.